Today we’re going to talk about recommender systems which form the backbone of so much of the content we see online from video recommendations on YouTube and Netflix to ads we see on Facebook, Twitter, and well, everywhere else. We’ll talk about there types of systems - content-based, social, and personalized recommendations - and take a closer look at what they're good at, but also why they often fail.
Crash Course is produced in association with PBS Digital Studios:
Crash Course is on Patreon! You can support us directly by signing up at
Thanks to the following patrons for their generous monthly contributions that help keep Crash Course free for everyone forever:
Eric Prestemon, Sam Buck, Mark Brouwer, Indika Siriwardena, Avi Yashchin, Timothy J Kwist, Brian Thomas Gossett, Haixiang N/A Liu, Jonathan Zbikowski, Siobhan Sabino, Zach Van Stanley, Jennifer Killen, Nathan Catchings, Brandon Westmoreland, dorsey, Kenneth F Penttinen, Trevin Beattie, Erika & Alexa Saur, Justin Zingsheim, Jessica Wode, Tom Trval, Jason Saslow, Nathan Taylor, Khaled El Shalakany, SR Foxley, Sam Ferguson, Yasenia Cruz, Eric Koslow, Tim Curwick, David Noe, Shawn Arnold, William McGraw, Andrei Krishkevich, Rachel Bright, Jirat, Ian Dundore
--
Want to find Crash Course elsewhere on the internet?
Facebook -
Twitter -
Tumblr -
Support Crash Course on Patreon:
CC Kids:
#CrashCourse #MachineLearning #ArtificialIntelligence
0 Comments